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DGM may be considered as a hybrid approach
combining the finite-volume and finite-element
methods.

Advantage:
Inherently conservative (Monotonic option)
High-order accuracy & High parallel efficiency
“Local” method & AMR capable

Potential: Application in climate and atmospheric
chemistry modeling, and NH modeling.

Popular in CFD and other engineering applications
(Cockburn and Shu 1989-98).

Global SW model: Giraldo et al. (JCP, 2002);
Nair, Thomas & Loft (MWR, 2005).
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DGM in 1D

1D scalar conservation law:

∂U

∂t
+
∂F (U)

∂x
= 0 in Ω × (0, T ),

with initial condition U0(x) = U(x, t = 0), ∀x ∈ Ω

The domain Ω (periodic) is partitioned into Nx

non-overlapping elements (intervals)
Ij = [xj−1/2, xj+1/2], j = 1, . . . , Nx, and
∆xj = (xj+1/2 − xj−1/2)

j−1

x x x x
j+1/2j−1/2 j+3/2j−3/2

j+1
IjII
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DGM-1D: Weak Formulation

A weak formulation of the problem is obtained by
multiplying the PDE by a test function ϕ(x) and
integrating over an element Ij :

∫

Ij

[
∂U

∂t
+
∂F (U)

∂x

]
ϕ(x)dx = 0.

Integrating the second term by parts =⇒
∫

Ij

∂U(x, t)

∂t
ϕ(x)dx−

∫

Ij

F (U(x, t))
∂ϕ(x)

∂x
dx+

F (U(xj+1/2, t))ϕ(x−
j+1/2

) − F (U(xj−1/2, t))ϕ(x+
j−1/2

) = 0,

where ϕ(x−) and ϕ(x+) denote "left" and "right" limits
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DGM-1D: Flux term

R

x
j−1/2

x
j+1/2

Ij

+ +_ (    )(    )(    ) _(    )

L L R

Flux function F (U) is not uniquely defined at xj±1/2

F (U) is replaced by a numerical flux function F̂ (U),
dependent on the left and right limits of the
discontinuous function U . At the interface xj+1/2,

F̂ (U)j+1/2(t) = F̂ (U(x−
j+1/2

, t), U(x+
j+1/2

, t))

Typical flux formulae: Gudunov, Lax-Friedrichs, Roe,
HLLC, etc.
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DGM-1D: LF Flux

For the present study, Lax-Friedrichs numerical flux is
used:

F̂ (a, b) =
1

2
[F (a) + F (b) − α(b− a)] ,

where α is the upper bound on |F ′(U)|.
Space discretization:

Let V k
h be a finite dimensional space such that

V k
h = {p : p|Ij

∈ Pk(Ij)} where Pk(Ij) is the space of
polynomials in Ij of degree at most k, ∀ j = 1, . . . , Nx.

The approximate solution Uh(x, t) ≈ U(x, t) and the test
function ϕh = ϕ are in V k

h .
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DGM-1D: Space Discretization

∫

Ij

∂Uh(x, t)

∂t
ϕh(x)dx =

∫

Ij

F (Uh(x, t))
∂ϕh(x)

∂x
dx−

[
F̂ (Uh)j+1/2(t)ϕh(x−

j+1/2
) + F̂ (Uh)j−1/2(t)ϕh(x+

j−1/2
)
]
,

Choose an orthogonal basis set spanning the space
V k

h . A set of Legendre polynomials,
B = {P`(ξ), ` = 0, 1, . . . , k} is a good compramise
between accuracy and efficiency.

Use a high-order Gaussian quadrature rule to evaluate
the integrals, and that defines the computational grid.

For the present study, the Gauss-Lobatto-Legendre
(GLL) quadrature rule is employed.
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DGM-1D: Space Discretization

Map every element Ij onto the reference element
[−1,+1].

Introduce a local coordinate ξ ∈ [−1,+1] s.t.,

ξ =
2 (x− xj)

∆xj
, xj = (xj−1/2+xj+1/2)/2 ⇒ ∂

∂x
=

2

∆xj

∂

∂ξ
.

Regular 

x j−1/2 x
j+1/2

jI

+1− 1

ξ

GLL   Grid 

Reference ElementElement
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DGM-1D: Discretization (Modal)

For every element Ij , the approximate solution Uj(ξ, t),
can be expressed in terms of the variable ξ:

Uj(ξ, t) =
k∑

`=0

U `
j (t)P`(ξ) for ξ ∈ [−1, 1], where

U `
j (t) =

2`+ 1

2

∫ 1

−1
Uj(ξ, t)P`(ξ) dξ ` = 0, 1, . . . , k.

By using the properties of the Legendre polynomials

∫ 1

−1
P`(ξ)Pm(ξ) dξ =

2

2`+ 1
δ`m, and

P`(1) = 1, P`(−1) = (−1)`
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DGM-1D: ODE (Modal)

Semi-discretized form =⇒

d

dt
U `

j (t) =
2 `+ 1

∆xj

[∫ 1

−1
F (Uj(ξ, t))

∂P`(ξ)

∂ξ
dξ −

(
F̂ (Uj(1))(t) − (−1)`F̂ (Uj(−1))(t)

)]

Map from spectral to physical space (U `
j (t) ⇒ Uj(t))

The final approximation can be expressed as

d

dt
Uj = L(Uj) in (0, T )
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DGM-1D: Modal Vs Nodal

The nodal basis set is constructed using
Lagrange-Legendre polynomials (hi(ξ)) with roots at
Gauss-Lobatto quadrature points.

Uj(ξ) =
k∑

j=0

Uj hj(ξ) for − 1 ≤ ξ ≤ 1,

hj(ξ) =
(ξ2 − 1)P ′

k(ξ)

k(k + 1)Pk(ξj) (ξ − ξj)
.

Semi-discretized form =⇒
d

dt
Uj = L(Uj) in (0, T )
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Modal vs Nodal

1D basis function for an expansion of order N = 4

−1 −0.65 0 0.65 1

0

1

−1 −0.65 0 0.65 1

0

1

Modal Basis Nodal Basis
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Time Integration

Total variation diminishing third-order Runge-Kutta
(TVD-RK) scheme (Gottlieb et al., 2001)

U (1) = Un + ∆tL(Un)

U (2) =
3

4
Un +

1

4
U (1) +

1

4
∆tL(U (1))

Un+1 =
1

3
Un +

2

3
U (2) +

2

3
∆tL(U (2)).

where the superscripts n and n+ 1 denote time levels t
and t+ ∆t, respectively

Note: The Courant number for the DG scheme is
estimated to be 1/(2k + 1), where k is the degree of the
polynomial, however, no theoretical proof exists when
k > 1 (Cockburn and Shu, 1989).
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DG-1D: Numerical Examples

Ut + Fx(U) = 0, Ω ≡ [−1, 1], periodic domain. For linear advection (Gaussian-hill)

F (U) = U , and for the Burgers Eqn. F (U) = U2/2.

Numerical & Exact Solution Numerical solution
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DGM in 2D
2D scalar conservation law

∂U

∂t
+ ∇ · ~F(U) = S(U), in Ω × (0, T ); ∀ (x, y) ∈ Ω

where U = U(x, y, t), ∇ ≡ (∂/∂x, ∂/∂y), ~F = (F,G) is
the flux function, and S is the source term.

Domain: The domain Ω is partitioned into Nx ×Ny

rectangular non-overlapping elements Ωij such that

Ωij = {(x, y) |x ∈ [xi−1/2, xi+1/2], y ∈ [yj−1/2, yj+1/2]},
for i = 1, 2, . . . , Nx; j = 1, 2, . . . , Ny.
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Weak Galerkin Formulation
Consider an element Ωij and an approximate solution
Uh in the finite dimensional vector space Vh(Ω).

Multiplication of the basic equation by a test function
ϕh ∈ Vh and integration over the element Ωij by parts,
results in a weak Galerkin formulation of the problem:

∂

∂t

∫

Ωij

Uh ϕh dΩ −
∫

Ωij

~F(Uh) · ∇ϕh dΩ

+

∫

∂Ωij

~F(Uh) · ~nϕh ds =

∫

Ωij

S(Uh)ϕhdΩ

where ~F(Uh) · ~n is analytic flux and ~n is the outward-facing

unit normal vector on the element boundary ∂Ωij.
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DGM: Flux term
Along the boundaries of an element ∂Ωij, the function
Uh is discontinuous.

Therefore, the analytic flux F(Uh) · ~n must be replaced
by a numerical flux F̂ (U−

h , U
+
h )

U−

h and U+
h are the left and right limits of the

discontinuous function Uh

U +
hU
_

Uh Uhh

After Num. Flux Operation

Element (Left) Element (Right)Element (Right)Element (Left)
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DGM: Numerical Flux
Numerical flux resolves the discontinuity of the
element edges and provides only mechanism by which
adjacent element interact.

A variety of numerical flux schemes are available for
the Reimann problem (Cockburn & Shu, 2001).

For simplicity, the Lax-Friedrichs numerical flux is used:

F̂(U−

h , U
+
h ) =

1

2

[
(F(U−

h ) + F(U+
h )) · ~n− α(U+

h − U−

h )
]
,

For a system, α is the upper bound for the absolute
value of eigenvalues of the flux Jacobian F ′(U).
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Discretization (Modal)
Choose a modal (orthogonal) basis as a set of
Legendre polynomials, B = {P`(ξ), ` = 0, 1, . . . , N}
Map (x, y) ⇒ (ξ, η) ∈ [−1, 1] ⊗ [−1, 1], reference element
such that ξ = 2(x− xi)/∆xi, η = 2(y − yj)/∆yj.

Expand approximate solution Uij and test function in
terms of tensor-product functions from the basis set.

Uij(ξ, η, t) =
N∑

`=0

N∑

m=0

Ûij`m(t)P`(ξ)Pm(η), where

Ûij`m(t) =
(2 `+ 1)(2m+ 1)

4

∫ 1

−1

∫ 1

−1
U(ξ, η, t)P`(ξ)Pm(η) dξ dη.
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Discretization (Nodal)
The nodal basis set is constructed using a
tensor-product of Lagrange-Legendre polynomials
(hi(ξ)) with roots at Gauss-Lobatto quadrature points.

Uij(ξ, η) =
N∑

i=0

N∑

j=0

Uij hi(ξ)hj(η) for − 1 ≤ ξ, η ≤ 1,

hi(ξ) =
(ξ2 − 1)P ′

N (ξ)

N(N + 1)PN (ξi) (ξ − ξi)
.

Final form for the modal discretization

d

dt
Ûij`m(t) =

(2 `+ 1)(2m+ 1)

2 ∆xi ∆yj
[IGrad + IFlux + ISource] ,
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Time integration
Evaluate the integrals (RHS) using GLL quadrature
rule.

Solve the ODE

d

dt
U = L(U) in (0, T )

A third-order total variation diminishing (TVD)
Runge-Kutta scheme (same as in the case of 1D)
without a filter or limiter.

DGAM – p.22/47



2D Cartesian: Solid-body rotation test

Gaussian-Hill: U(x, y) = a0 exp(−r2), r2 = (x− π/2)2 + y2,
Ω ≡ [−π, π]2 (400 elements, k = 3)

Initial solution Numerical solution after one rotation
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2D Cartesian: Convergence
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2D: Limiter Option
Montonic option for DGM: WENO limiter
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Non-smooth Vortex on a (1600 × 4 × 4) grid. Exact vs Numerical solutions, after 3 time units
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DGM: Spherical Geometry
The sphere is decomposed into 6 identical regions,
using the central (gnomonic) projection:
x = a tanλ, y = a tan θ secλ, 2a is the cube side.

Local coordinate systems are free of singularities
have identical metric terms
creates a non-orthogonal curvilinear coordinate
system

Metric tensor of the transformation is defined as
Gij ≡ ai · aj , i, j ∈ {1, 2}.

The components of the covariant vectors (ui) and the
contravariant vectors (ui) are related through:

ui = Giju
j , ui = Gijuj , Gij = (Gij)

−1
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Equiangular Projection
Central angles x1, x2 ∈ [−π/4, π/4] are the independent
variables. Let ρ2 = 1 + tan2 x1 + tan2 x2, metric tensor

Gij =
R2

ρ4 cos2 x1 cos2 x2

[
1 + tan2 x1 − tanx1 tanx2

− tanx1 tanx2 1 + tan2 x2

]

Z

P

P P P P

P

1 2 34

5

6

X

Y

P1

(Bottom)

(Top)
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Transform: Cube ⇔ Sphere
The spherical velocity vector v(λ, θ) = (u, v), can be
expressed in terms of covariant vector u1 = v · a1,
u2 = v · a2, ⇒ v = u1

a1 + u2
a2.

Metric tensor of the transformation is defined by

Gij = ATA; A =

[
R cos θ ∂λ/∂x1 R cos θ ∂λ/∂x2

R∂θ/∂x1 R∂θ/∂x2

]

The matrix A can be used for transforming spherical
velocity (u, v) to the cubed-sphere velocity vectors.

A

[
u1

u2

]
=

[
u

v

]
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SWE on the Cubed-Sphere
In curvilinear coordinates, the continuity and momentum
equations for the flux form shallow water system can be
written as follows (Sadourny 1972; Rancic et al. 1996;
Nair et al. 2005 (MWR)) :

∂

∂t
(
√
Gh) +

∂

∂x1
(
√
Gu1h) +

∂

∂x2
(
√
Gu2h) = 0,

∂u1

∂t
+

∂

∂x1
E =

√
Gu2(f + ζ),

∂u2

∂t
+

∂

∂x2
E = −

√
Gu1(f + ζ),

where

G = det(Gij), E = Φ+
1

2
(u1 u

1 +u2 u
2), ζ =

1√
G

[
∂u2

∂x1
− ∂u1

∂x2

]
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Flux form SWE
∂

∂t
U +

∂

∂x1
F1(U) +

∂

∂x2
F2(U) = S(U)

where U =
[√

Gh, u1, u2

]T
, F1 =

[√
Ghu1, E, 0

]T

F2 =
[√

Ghu2, 0, E
]T

, S =
[
0,
√
Gu2(f + ζ),−

√
Gu1(f + ζ)

]T
.

Each face of the cubed-sphere is partitioned into
Ne ×Ne rectangular non-overlapping elements Ωij

Each element is mapped onto the reference element
[−1, 1] ⊗ [−1, 1]

Total number of elements on the cubed sphere is
6 ×Ne ×Ne.
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Computational Domain

Cubed-Sphere (Ne = 5) with 8 × 8 GLL points

ξ

(−1, 1)

ξ
(−1, −1) (1, −1)

(1, 1)

1

2

SWE test suite by Williamson et al. (1992, JCP).
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Flux computation at cube edges
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To compute the flux on the edge of the cubed-sphere, Pn,
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SW Test-1

Numerical Flux: Lax-Friedrichs; eigenvalues of F ′(U)

α1 = max
(
|u1| +

√
ΦG11

)
, α2 = max

(
|u2| +

√
ΦG22

)

SW Test case-1: Solid-body rotation of a cosine-bell (α = π/4)
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SW Test-1: Modal & Nodal

Modal vs Nodal DGM vs SEM
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SW Test-1: Movie
SW1 Movie
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Deformational Flow
Idealized Cyclogenisis: (Doswell 1985; Nair et al. 1999).

ψ(λ′, θ′, t) = 1 − tanh

[
ρ′(θ′)

γ
sin(λ′ − ω′t)

]

Max error is O(10−6).
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Deformational Flow
Voretx Movie
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SW Test-2: Geostrophic Flow

Steady state geostrophic flow (α = π/4). Max height error is O(10−6) m.
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SW Test-5: Flow over a mountain

Zonal flow over a mountain: (864 × 4 × 4) grid, after 5 and 15 days of integration
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SW5 Movie
SW5 Movie
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SW Test-6: Rossby-Haurwitz Wave

(864 × 4 × 4) Grid.
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SW6 Movie
SW6 Movie
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Parallel Performance
Strong Scaling: Hold total work constant, increase
number of processes.

Expect to cut runtime in half by doubling process
count.
In reality, computation time decreases but
communication time remains approx. constant.

Weak Scaling: Hold work per process constant,
regardless of process count.

Expect runtime to remain constant, regardless of
process count.
Since computation time remains constant,
communication time has similar effect at all
process counts.

Primarily interested in strong scaling.
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Performance - Hemisphere
Linux cluster with 64 DP nodes, Intel Xenon 2.4 GHz,
8 × 8 Dolphin torus
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Performance - Frost
IBM BG/L, 1024 DP nodes, 700 MHz PPC 440s,
8 × 8 × 16 torus and tree
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Summary
Discontinuous Galerkin Method (DGM) based flux form
shallow water model has been developed on the
cubed-sphere (Nair et al. 2005 (MWR))

Both modal and nodal versions give almost identical
results

The DG model has been implemented in NCAR
high-order method modeling (HOMME) frame work.

Numerical results either comparable or better than a
standard spectral element method and DG scheme
exhibits exponential convergence for SW test case-2

DG solutions of the SW test cases are much better
than those of a spectral model (Jacob-Chien et al.
1995) for a given spatial resolution.
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Summary
For high-order spatial discretization, the solution do not
exhibit spurious oscillation for the flow over a mountain
test case.

DG model conserves mass to machine precision.
Conservation of total energy and enstrophy is better
preserved than the existing finite-volume models.

Initial scaling results are promising.

Future work: Development of a 3D DGAM dynamical
core, efficient time integration scheme, limiters,
performance study on BG/L.
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